

Lichfield District Council Annual Status Report 2017

Bureau Veritas

February 2018

Document Control Sheet

Issue/Revision	Issue 1					
Remarks	DRAFT					
Date	February 2018					
Submitted to	Jack Twomey					
Prepared by	Jo Davies - Consultant					
Signature	Benais					
Approved by	Hannah Smith – Senior Consultant					
Signature	amuts					
Project number	6472633					

Disclaimer

This Report was completed by Bureau Veritas on the basis of a defined programme of work and terms and conditions agreed with the Client. Bureau Veritas' confirms that in preparing this Report it has exercised all reasonable skill and care taking into account the project objectives, the agreed scope of works, prevailing site conditions and the degree of manpower and resources allocated to the project.

Bureau Veritas accepts no responsibility to any parties whatsoever, following the issue of the Report, for any matters arising outside the agreed scope of the works.

This Report is issued in confidence to the Client and Bureau Veritas has no responsibility to any third parties to whom this Report may be circulated, in part or in full, and any such parties rely on the contents of the report solely at their own risk.

Unless specifically assigned or transferred within the terms of the agreement, the consultant asserts and retains all Copyright, and other Intellectual Property Rights, in and over the Report and its contents.

Any questions or matters arising from this Report should be addressed in the first instance to the report author.

2017 Air Quality Annual Status Report (ASR)

In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management

February 2018

Local Authority Officer	Lichfield District Council					
Department	Environmental Health					
Address	Frog Lane, Lichfield, WS13 6ZE					
Telephone	01543 308734					
E-mail	jack.twomey@lichfielddc.gov.uk					
Report Reference number	6472633					
Date	February 2018					

Executive Summary: Air Quality in Our Area

Air Quality in Lichfield District Council

Air pollution is associated with a number of adverse health impacts. It is recognised as a contributing factor in the onset of heart disease and cancer. Additionally, air pollution particularly affects the most vulnerable in society: children and older people, and those with heart and lung conditions. There is also often a strong correlation with equalities issues, because areas with poor air quality are also often the less affluent areas^{1,2}.

The annual health cost to society of the impacts of particulate matter alone in the UK is estimated to be around £16 billion³.

Lichfield District Council (LDC) is situated in the north of the West Midlands, close to some highly industrialised parts of the UK. To the south west lie Walsall and Birmingham. LDC is only moderately industrialized, but there are a number of major roads in the region, including the M6 Toll, A38 and A5. Consequently, road traffic is the main source of air pollution in the area. Burntwood and Lichfield are the two largest urban areas in the District.

AQMA no. 1 was declared in August 2008 and encompasses the traffic dense area of the A5 Muckley Corner Roundabout, together with several of the surrounding buildings. Following the 2015 Detailed Assessment of the area surrounding the A38 up to the northern boundary of the district, LDC declared AQMA No.2 which came into force in August 2016.

During 2016, there were a total of thirteen sites where the annual mean NO_2 objective was exceeded. Sites A38-2A/B, MUC-1A/B/C and MUC-1 exceeded the annual mean objective with reported concentrations of $45.1\mu g/m^3$, $49.4\mu g/m^3$ and $47.2\mu g/m^3$ respectively. All three monitoring sites were at locations representing relevant exposure and therefore distance correction was not required.

The annual mean concentrations at the exceeding sites, A38-1, A38-4A/B, A38-5A/B, A5-1A, A5-2B, MUC-6, MUC-2, MUC-3, MUC-4 and MUC-5 were all distance corrected to estimate the concentration at relevant exposure. Of the sites that were

1

¹ Environmental equity, air quality, socioeconomic status and respiratory health, 2010

² Air quality and social deprivation in the UK: an environmental inequalities analysis, 2006

³ Defra. Abatement cost guidance for valuing changes in air quality, May 2013

distance corrected; only MUC-3 and MUC-4 were still found to be exceeding the annual mean NO_2 objective at the receptor façade, with reported concentrations of $46.0\mu g/m^3$ and $44.1\mu g/m^3$ respectively.

The planned HS2 project will pass through the Lichfield Council area, although at this stage it is not considered likely to cause any adverse air quality impacts at present as detailed in Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC.

Actions to Improve Air Quality

The Council is preparing an AQAP to tackle the air quality issue within the AQMAs. The plan is to be finalised within February 2018 according to LDC's Forward Plan, dated 26th October 2017⁴. The following main actions were identified ahead of the AQAP, based on the area and type of effects that may be achieved:

- Reduce traffic numbers on A5 and A38, either total volume or only HGVs depending on future M6 toll use;
- EcoStars upgrade commercial vehicles (buses, HGVs and LGV) to euro V/VI; and
- Upgrade to expressways either/a combination of either reducing length of any junction links; increasing speed on free flow or amending road widths in some areas.

⁴ https://www.lichfielddc.gov.uk/Council/Live-meetings/Forward-plan-for-council-decisions.aspx

In addition to the AQAP, the Local Plan (2008-2029) and Integrated Transport Strategy (2015-2029) include policies and actions in relation to sustainable transport within the District. The core actions are:

- Improve everyone's access to public transport, their ability to walk and cycle, minimising the need to travel by car and reducing levels of congestion;
- Improve transport infrastructure; and
- Continue and improve partnership working between operators, developers and public sector agencies.

Local Priorities and Challenges

There are two AQMAs declared within the District for exceedances of the annual mean NO₂ objective with road traffic being the major source. Given the need to meet the NO₂ annual mean objective, the focus will be on reducing the annual mean concentrations of NO₂. The key priorities and challenges for the coming year will be

- To produce an air quality action plan to determine the best policies and intervention measures to put in place in order to reduce local NO₂ concentrations; and
- To install additional monitoring locations at the A38 Rykneld Street near Croxhall Road and near A5127/A39 junction to confirm existing concentrations.

How to Get Involved

Due to the main source of air pollution within Lichfield District Council being from transport sources, the easiest way for the public to get involved with helping improving air quality within the area would be to look at alternatives to the way they usually travel.

The following are suggested alternatives to private travel that would contribute to improving the air quality within the District:

- Use public transport where available This reduces the number of private vehicles in operation reducing pollutant concentration through the number of vehicles and reducing congestion;
- Walk or cycle if your journey allows From choosing to walk or cycle for your
 journey the number of vehicles is reduced and also there is the added benefit
 of keeping fit and healthy. In addition many of the cycle routes are off-road
 meaning you are not in close proximity to emissions from road traffic sources;
- Car/lift sharing Where a number of individuals are making similar journeys, such as travelling to work or to school car sharing reduces the number of vehicles on the road and therefore the amount of emissions being released.
 This can be promoted via travel plans through the workplace and within schools; and
- Alternative fuel / more efficient vehicles Choosing a vehicle that meets the specific needs of the owner, fully electric, hybrid fuel and more fuel efficient cars are available and all have different levels benefits by reducing the amount of emissions being released.

Table of Contents

E	xecuti	ve Summary: Air Quality in Our Area	İ
	Air Qu	ality in Lichfield District Council	i
	Action	s to Improve Air Quality	ii
	Local	Priorities and Challenges	iv
	How to	Get Involved	iv
1	Lo	cal Air Quality Management	1
2	Ac	tions to Improve Air Quality	2
	2.1	Air Quality Management Areas	2
	2.2	Progress and Impact of Measures to address Air Quality in Lichfield District	
	Counc	il	4
	2.3	PM _{2.5} – Local Authority Approach to Reducing Emissions and or	
	Conce	ntrations	6
	2.3.	Particulate Matter (PM _{2.5}) Levels in Staffordshire and Stoke-on-Trent	6
	2.3.	2 PM _{2.5} in Staffordshire & Stoke-on-Trent - Next steps	7
3	Air	Quality Monitoring Data and Comparison with Air Quality	
O	bjectiv	es and National Compliance	9
	3.1	Summary of Monitoring Undertaken	9
	3.1.	1 Automatic Monitoring Sites	9
	3.1.	2 Non-Automatic Monitoring Sites	9
	3.2	Individual Pollutants	10
	3.2.	5 (2)	
A	ppend	ix A: Monitoring Results	15
Α	ppend	ix B: Full Monthly Diffusion Tube Results for 2016	18
Α	ppend	ix C: Supporting Technical Information / Air Quality Monitoring	
D	ata QA	VQC	19
		ix D: Map(s) of Monitoring Locations	
		ix E: Summary of Air Quality Objectives in England	
		ix F: Annual Mean PM ₁₀ and PM _{2.5} Results of monitoring by	
		shire Authorities 2011 to 2016	20
		y of Terms	
R	eferen	ces	32
Li	ist of T	ables	
		1 – Declared Air Quality Management Areas	
	anie /	Z = Progress on Measures to improve Air Chairv	ר

Table A.1 – Details of Non-Automatic Monitoring Sites
Table B.1 – NO ₂ Monthly Diffusion Tube Results - 201618
List of Figures
Figure 1– Trends in Annual Mean Nitrogen Dioxide Concentrations Measured at
Diffusion Tube Monitoring Sites Outside AQMAs11
Figure C.1- Distance with Fall off Calculator
Figure C.1- Distance with Fall off Calculator
rigure C. 1- Distance with Fall on Calculator20
Figure D. 2 – Map of Non-Automatic Monitoring Sites: Alrewas and Fradley23
Figure D. 3 – Map of Non-Automatic Monitoring Sites: Canwell
Figure D. 4 – Map of Non-Automatic Monitoring Sites: Lichfield25
Figure D. 5 – Map of Non-Automatic Monitoring Sites. A5 –Roman Road26
Figure D. 6 – Map of Non-Automatic Monitoring Sites: Burntwood
Figure D. 7 – Map of Non-Automatic Monitoring Sites: A38 near Evelyn Wood28

1 Local Air Quality Management

This report provides an overview of air quality in Lichfield District Council during 2016. It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995) and the relevant Policy and Technical Guidance documents.

The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Lichfield District Council to improve air quality and any progress that has been made.

The statutory air quality objectives applicable to LAQM in England can be found in Table E.1 in Appendix E.

2 Actions to Improve Air Quality

2.1 Air Quality Management Areas

Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority must prepare an Air Quality Action Plan (AQAP) within 12-18 months setting out measures it intends to put in place in pursuit of the objectives.

A summary of AQMAs declared by Lichfield District Council can be found in Table 2.1. Further information related to declared or revoked AQMAs, including maps of AQMA boundaries are available online at https://uk-air.defra.gov.uk/aqma/list. Alternatively, see Appendix D: Map(s) of Monitoring Locations and AQMAs, which provides for a map of air quality monitoring locations in relation to the AQMAs.

Table 2.1 – Declared Air Quality Management Areas

		Pollutants			Is air quality in the AQMA influence	(max monitored concentration	xceedance imum I/modelled n at a location exposure)	
AQMA Name	Date of Declaration	and Air Quality Objectives	City / Town	One Line Description	d by roads controlle d by Highway s England?	roads ontrolle d by lighway S		Action Plan (inc. date of publication)
A5 Muckley Corner AQMA No.1	01/08/2008	NO₂ annual mean	Lichfield	An area encompassing the Muckley Corner Roundabout on the A5 along with a number of surrounding buildings.	No	51.0μg/m ³	59.9µg/m³	-
AQMA No.2	01/08/2016	NO ₂ annual mean	Lichfield	A38, Wall Island to Alrewas	No	35.7µg/m³	43.0μg/m ³	-

2.2 Progress and Impact of Measures to address Air Quality in Lichfield District Council

Lichfield District Council has progressed a number of measures during the current reporting year of 2016 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. More details on the measures can be found in the Local Plan (2008-2029) and Integrated Transport Strategy (2015-2029).

Key completed measures are:

- Public transport services have been maintained and improved with more bus services linking to Burntwood and Tamworth, and more frequent services to Burton on Trent; and
- The A5/A5148 Wall Island improvement scheme was required due to traffic congestion and queuing problems during peak periods. Works were delivered in 2014 as part of the Highways Agency's Pinch Point Programme. Traffic signals were introduced on two junction approaches with gap closures and carriageway widening works. This has helped to alleviate daily traffic congestion and reduce journey times as well as improving road safety at the junction.

Lichfield District Council expects the following measures to be completed over the course of the next reporting year:

- Finalise AQAP;
- Continue to work with partners to improve accessibility, by enhancing sustainable transport opportunities and encouraging development that, reduces the need to travel, and changes to travel behaviour through a balance of transport measures; and
- Future development within the District will be focused on the most accessible settlements and locations to reduce the need to travel.

Table 2.2 – Progress on Measures to Improve Air Quality

Measure No.	Measure	EU Category	EU Classification	Lead Authority	Planning Phase	Implementati on Phase	Key Performance Indicator	Target Pollution Reduction in the AQMA	Progress to Date	Estimate d Complet ion Date	Comments
1	Ecostars	Vehicle Fleet Efficiency	Fleet efficiency and recognition schemes	Lichfield DC and supported by Third Party	-	On-going	Reduction in fuel consumption & emissions	-	On-going	On- going	http://www.ec ostars- uk.com/
2	Staffordshire Air Quality Forum	Policy Guidance and Development Control	Regional Groups Co- ordinating programmes to develop Area wide Strategies to reduce emissions and improve air quality	County-wide	Completed	On-going	-	-	On-going	On- going	
3	Improvement of A38	Traffic Management	Strategic highway improvements	Lichfield DC	Completed	On-going	-	-	On-going	On- going	Muckley Corner has AQMA order imposed on it
4	Increase the Volume of through traffic using M6 Tool	Traffic Management	UTC, Congestion management, traffic reduction	Lichfield DC	Planning	-	-	-	-	-	-
5	Upgrading to Expressways	Traffic Management	UTC, Congestion management, traffic reduction	Lichfield DC	Planning	-	Reduction in traffic congestion	-	-	-	-
6	Improvements to Lichfield Trent Valley rail station	Promoting Travel Alternatives	avel rail and inland Lichfield DC Completed On-going		-	On-going	On- going	-			
7	The A5/A5148 Wall Island improvement scheme	Traffic Management	UTC, Congestion management, traffic reduction	Lichfield DC	Completed	Completed	Reduction in journey time	-			

2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and or Concentrations

As detailed in Policy Guidance LAQM.PG16 (Chapter 7), local authorities are expected to work towards reducing emissions and/or concentrations of PM_{2.5} (particulate matter with an aerodynamic diameter of 2.5µm or less). There is clear evidence that PM_{2.5} has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases.

Particulate matter, or PM, is the term used to describe particles found in the air, including dust, dirt and liquid droplets. PM comes from both natural and man-made sources, including traffic emissions and Saharan-Sahel dust. These particles can be suspended in the air for long periods of time, and can travel across large distances.

PM less than 10 micrometers in diameter (PM_{10}) pose a health concern because they can be inhaled into and accumulate in the respiratory system. PM less than 2.5 micrometers in diameter ($PM_{2.5}$) are referred to as "fine" particles and are believed to pose the greatest health risks, as they can lodge deeply into the lungs and also pass into the bloodstream.

PM_{2.5} is the pollutant which has the biggest impact on public health and on which the Public Health Outcomes Framework (PHOF) indicator 3.015 is based.

The Royal College of Physicians (RCP) undertook a review in February 2016 where they found that long term exposure to air pollution impairs lung function growth in children, and that outdoor exposure is linked to lung cancer in adults. Within Staffordshire it is estimated that 5% of all deaths can be attributed to exposure to PM_{2.5}, which is above the 4.7% level currently recorded across England (40,000 deaths annually). Overall, the estimated cost to individuals and society is more than £20 billion annually for the UK. The Public Health Outcomes Framework indicator for the fraction of deaths attributable to PM_{2.5} in Lichfield District Council alone is 4.6%, which is below national average of 4.7%.

2.3.1 Particulate Matter (PM_{2.5}) Levels in Staffordshire and Stoke-on-Trent

Lichfield District Council does not currently undertake any monitoring of PM_{10} or $PM_{2.5}$, and consequently there are currently no specific measures in place to address $PM_{2.5}$ concentrations within Lichfield District Council.

LAQM.TG16 Table A.1 Action Toolbox provides a list of measures that can be implemented to tackle PM_{2.5}.

Lichfield District Council will review these actions with the County Council Public Health Team to consider whether any specific actions are required.

A number of the Staffordshire Authorities currently monitor locally for PM₁₀. Defra's Automatic Urban and Rural Network (AURN) site Stoke-on-Trent Centre has a dedicated PM_{2.5} monitor. Data on the local level of PM_{2.5} annual mean concentrations for the Staffordshire Authorities is available in Appendix F. Where the data is derived from PM₁₀ monitoring this has been adjusted by applying a correction factor of 0.7 to derive the PM_{2.5} component. The correction factor has been derived from the average of all ratios of PM_{2.5}/PM₁₀ for the years from 2010 to 2014 for forty sites within the Automatic Urban and Rural Network (AURN) where these substances are measured on an hourly basis and follows the guidance published in LAQM (TG16). As can be seen from the results, concentrations of PM_{2.5} within the Staffordshire Authorities are below the 2020 EU limit value of 25µg/m³.

2.3.2 PM_{2.5} in Staffordshire & Stoke-on-Trent - Next steps

As PM_{2.5} is an issue requiring collaboration between the district, county and city authorities within Staffordshire, the following actions had been proposed in addition to those outlined in the action plan. However progress on these and the action plan has been limited and it is intended that they will be reported on in the 2018 ASR.

- To agree a target for reducing Fraction of All Cause Mortality from PM_{2.5} in each district, city and county authority by 2020
- To agree a target for reducing PM_{2.5} exposure (calculated from PM₁₀ exposure / background maps / local monitoring where available)
- To maintain compliance with the 2020 EU limit value of 25μg/m³
- To include Public Health Outcome Framework Indicator 3.01 in the Staffordshire and District Authority and City Council Joint Strategic Needs Assessment for 2017/2018 onwards and to report progress to the relevant Health and Wellbeing Boards.
- To continue to identify risks affecting PM_{2.5} which need to be addressed at a national level.

- A number of authorities within Staffordshire are receiving applications for STOR (Short Term Operating Reserve) sites to supplement power to the National Electricity Grid at times of peak demand. These sites typically operate during the autumn / winter months and can be high emitters of PM. There is currently a conflict in national policy which is seeking security of energy supply and the drive to reduce anthropogenic PM_{2.5}. Recent approaches to DEFRA have revealed a lack of suitable guidance to local authorities and STOR operators.
- To lobby for a suitable damage cost calculation to reflect the cost to society from PM_{2.5} and to support this through local and national planning policies.

3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance

3.1 Summary of Monitoring Undertaken

3.1.1 Automatic Monitoring Sites

This section sets out what monitoring has taken place and how it compares with objectives.

Lichfield District Council did not undertake any automatic (continuous) monitoring during 2016.

3.1.2 Non-Automatic Monitoring Sites

Lichfield District Council undertook non - automatic (passive) monitoring of NO₂ at 23 sites during 2016. Table A.1 in Appendix A shows the details of the sites. There was one new site included in 2016 (LT – Lichfield Town) which commenced data capture from October 2016. There was therefore three months of data available only for 2016 at this site and it was anticipated that, although the site saw exceedances due to its roadside location, the relevant receptors that the Diffusion Tube was installed for have not yet been built (residential development on the Ford Garage site). The LT site for the 2017 ASR has therefore not been distance corrected to nearest exposure. Additional data capture will be provided within the 2018 ASR, whereupon relevant exposure may be available.

The monitoring locations include six duplicate sites and one triplicate site as follows:

- A38–2 and A38-2(1);
- A38-2A and A38-2B;
- A38-4A and A38-4B;
- A38-4(X) and A38-4(Y);
- A38-5A and A38-5B;
- A38-A and A38-6B; and
- MUC-1A, MUC-1B and MUC-1C.

Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) and bias adjustment for the diffusion tubes are included in Appendix C.

The diffusion tubes are supplied and analysed by Staffordshire Scientific Services utilising the 20% triethanolamine (TEA) in water preparation method. Quality control procedures, including bias adjustment, are discussed in Appendix A.

3.2 Individual Pollutants

The air quality monitoring results presented in this section are, where relevant, adjusted for bias. Further details on adjustments are provided in Appendix C.

3.2.1 Nitrogen Dioxide (NO₂)

Table A.2 in Appendix A compares the ratified and adjusted monitored NO_2 annual mean concentrations for the past 5 years with the annual mean air quality objective of $40\mu g/m^3$. As discussed, Site LT is excluded due to only three months' of data being available for 2016.

The full 2016 dataset of monthly mean values is provided in Appendix B.

Data capture for 2016 was good (all above 75%), with no established sites requiring short to long term adjustment (annualisation). One site, LT, was only installed in October 2016 and was therefore deemed to have too small of a data set to annualise and consider for the NO₂ annual mean results for 2016.

Results for year 2016 have been bias adjusted using a national bias adjustment factor of 0.91. Full details of the bias adjustment and QA/QC procedure are provided in Appendix A.

For the full term 2016 data set there were thirteen sites where the annual mean NO₂ objective was exceeded. In addition, the LT site exceeded NO₂ concentrations in each of the three month's that were measured. The highest annual mean NO₂ concentration was observed at the site MUC-3.

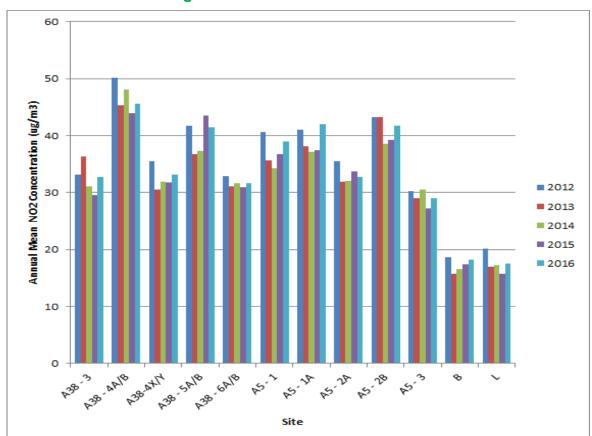


Figure 1– Trends in Annual Mean Nitrogen Dioxide Concentrations Measured at Diffusion Tube Monitoring Sites Outside AQMAs

Figure 1 shows the trend across the diffusion tube monitoring locations outside the AQMAs in Lichfield District Council from 2012 to 2016. The annual mean objective for NO₂ has been met at the majority of the locations over the past five years. During 2016, the following four sites outside of the current AQMAs recorded an exceedance of the annual mean objective:

- A38-4A/B–Canwell (45.6µg/m³);
- A38-5A/B–Canwell (41.4µg/m³);
- A5 1A-Muckley Corner (42.0µg/m³); and
- A5 2B-Muckley Corner (41.7μg/m³).

All four sites are not located at relevant exposure, therefore distance correction was carried out on the exceeding monitoring locations. The calculated concentration at a location of relevant exposure (façade of a residential property), fell to below the objective at site A38-4A/B and A38-5A/B with the results of $37.3\mu g/m^3$ and $27.9\mu g/m^3$ respectively in 2016. Sites A5 – 1A and A5 – 2B also fell below the objective to

32.4µg/m3 and 33.9µg/m3 respectively; following distance correction (see Figure C.1).

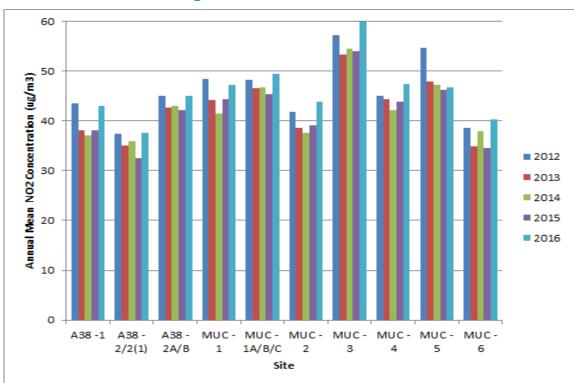


Figure 2 – Trends in Annual Mean Nitrogen Dioxide Concentrations Measured at Diffusion Tube Monitoring Sites within AQMAs

Figure 2 shows that nine of these sites have recorded an exceedance of the annual mean objective within the existing AQMAs:

- A38-1: Alrewas (within AQMA No.2, 47.2μg/m³);
- A38-2A/B: Fradley (within AQMA No.2, 45.1µg/m³);
- MUC-1: Muckley Corner Hotel Ground Floor (within AQMA No.1, 47.2μg/m³);
- MUC-1A/B/C: Muckley Corner Hotel First Floor (within AQMA No.1, 49.4µg/m³);
- MUC-2: Muckley Corner A5 Westbound (within AQMA No.1, 43.9μg/m³);
- MUC-3: Muckley Corner A461 Southbound (within AQMA No.1, 59.9μg/m³);
- MUC-4: Muckley Corner A5 Westbound (within AQMA No.1, 47.5μg/m³);
- MUC-5: Muckley Corner A5 Eastbound (within AQMA No.1, 46.8µg/m³); and
- MUC-6: Muckley Corner A461 Southbound (within AQMA No.1, 40.4μg/m³).

Of the AQMA sites highlighted; A38-1, MUC-2, MUC-3, MUC-4, MUC-5 and MUC-6 were distance corrected to estimate the concentration at relevant exposure (see Figure C.1). The sites MUC-3 and MUC-4 exceeded the objective at the receptor façade with reported concentrations of 46.0µg/m³ and 44.1µg/m³ respectively. Sites A38-1, MUC-2, MUC-5 and MUC-6 met the objective at the receptor façade, however all were within 10% of the Air Quality Objective. All sites have shown exceedances in previous years; as such an AQMA continues to be necessary.

It is also notable, that AQMA No 1 has remained at an annual mean NO_2 concentration of $47\mu g/m3$ since 2012. AQMA No2 has seen a slight increase in local concentration from $45\mu g/m3$ in 2012 to 45.1 g/m3 in 2016.

Table 3.1 provides information on distance corrected sites to the nearest relevant exposure façade. Details of fall-off distance correction of sites exceeding the NO₂ annual mean objective are present in Appendix C.

Table 3.1–Fall-off with Distance Correction of Sites Exceeding the NO₂ Annual Mean Objective

Site ID	In AQMA?	Distance Kerb- Receptor (m)	Distance Kerb- Monitor (m)	Bias Adjusted Annual Mean (µg/m³)	Distance Corrected Annual Mean (μg/m³)
A38-1 - Alrewas	Υ	9	1	43.0	31.2
A38-4A/B - Canwell	Ν	10	6.85	45.6	37.3
A38 -5A/B- Canwell	N	35	10	41.4	27.9
A5–2B- Muckley Corner	N	6	2	41.7	33.9
MUC-2- Muckley Corner	Υ	9	5	43.9	35.8
MUC-3- Muckley Corner	Υ	10	5.0	59.9	46.0
MUC-4-Muckley Corner	Υ	2.0	4.0	47.5	44.1
MUC-5 -Muckley Corner	Y	5.0	2.0	46.8	38.2
MUC-6- Muckley Corner	Y	5.0	2.0	40.4	33.7
A5-1A-Muckley Corner	N	6.0	1.0	42.0	32.4

With respect to the hourly NO_2 objective, there could be a potential risk of exceedance where the annual mean concentration is greater than $60\mu g/m^3$. For the 2016 results there are no sites where the annual mean is greater than $60\mu g/m^3$; therefore it is unlikely that the hourly mean objective will be exceeded at any of the monitoring sites.

Appendix A: Monitoring Results

Table A.1 – Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Distance to Relevant Exposure (m)	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
A38 -1	Alrewas	Roadside	417101	314180	NO ₂	Υ	9	1	N	2
A38 - 2/2(1)	Fradley	Roadside	416295	313186	NO ₂	Υ	10	5	N	2
A38 - 2A/B	Fradley	Roadside	416290	313175	NO ₂	Υ	0	6	N	2
A38 - 3	Lichfield	Roadside	412891	306817	NO ₂	Ν	6	2	N	2
A38 - 4A/B	Canwell	Roadside	413978	300834	NO ₂	N	10	6.85	N	2
A38-4X/Y	Canwell	Roadside	413989	300869	NO ₂	N	0	15	N	2
A38 - 5A/B	Canwell	Roadside	413950	300574	NO ₂	N	35	10	N	2
A38 - 6A/B	Canwell	Roadside	413961	300539	NO ₂	N	10	25	N	2
A5 - 1	Muckley Corner	Roadside	407208	306513	NO ₂	N	>200	4	N	2
A5 - 1A	Muckley Corner	Roadside	407895	306516	NO ₂	N	6	1	N	2
A5 - 2A	Muckley Corner	Roadside	408893	306549	NO ₂	N	12	5	N	2
A5 - 2B	Muckley Corner	Roadside	408667	306500	NO ₂	N	6	2	N	2
A5 - 3	Lichfield	Roadside	412063	305379	NO ₂	N	13	10	N	2
В	Burntwood	Urban Background	405086	309344	NO ₂	N	127	N/A	N	2
L	Lichfield	Urban Background	410544	310760	NO ₂	N	42	N/A	N	2
MUC - 1	Muckley Corner Hotel Ground Floor	Roadside	408164	306513	NO ₂	Υ	N/A	5	N	2
MUC-1A/B/C	Muckley Corner Hotel First Floor	Roadside	408164	306513	NO ₂	Υ	0	5	N	2
MUC - 2	Muckley Corner A5 Westbound	Roadside	408165	306487	NO ₂	Υ	9	5	N	2
MUC - 3	Muckley Corner A461 Southbound	Roadside	408097	306468	NO ₂	Υ	10	5	N	2

Site ID	Site Name	Site Type	X OS Grid Ref	Y OS Grid Ref	Pollutants Monitored	In AQMA?	Distance to Relevant Exposure (m)	Distance to kerb of nearest road (m) (2)	Tube collocated with a Continuous Analyser?	Height (m)
MUC - 4	Muckley Corner A5 Westbound	Roadside	408029	306501	NO ₂	Υ	2	4	N	2
MUC - 5	Muckley Corner A5 Eastbound	Roadside	408030	306516	NO ₂	Υ	5	2	N	2
MUC - 6	Muckley Corner A461 Southbound	Roadside	408161	306556	NO ₂	Υ	5	2	N	2
LT ⁽³⁾	Lichfield Town	Roadside	411792	309161	NO2	NO	N/A	N/A	NO	2

- (1) Om if the monitoring site is at a location of exposure (e.g. installed on/adjacent to the façade of a residential property).
- (2) N/A if not applicable.
- (3) Monitoring recorded was between Oct Dec, 2016 only and not deemed sufficient data capture for the 2016 annual mean results or possess a relevant exposure at time of monitoring.

Table A.2 – Annual Mean NO₂ Monitoring Results

Site ID	Site Type	Monitoring Type	Valid Data Capture for Monitoring Period (%) (1)	Valid Data Capture 2016	NO ₂ Anr	nual Mean	Concent	ation (μο	g/m³) ⁽³⁾
			Wonitoring Period (%)	(%) ⁽²⁾	2012	2013	2014	2015	2016
A38 -1	Roadside	Diffusion Tube	100	100	43.5	38.1	37.1	38.2	43.0
A38 - 2/2(1)	Roadside	Diffusion Tube	100	100	37.4	35.1	35.9	32.6	37.6
A38 - 2A/B	Roadside	Diffusion Tube	100	100	45.0	42.7	43.1	42.2	45.1
A38 - 3	Roadside	Diffusion Tube	100	100	33.1	36.4	31.1	29.5	32.7
A38 - 4A/B	Roadside	Diffusion Tube	83	83	50.1	45.3	48.1	44.0	45.6
A38-4X/Y	Roadside	Diffusion Tube	100	100	35.5	30.5	31.9	31.8	33.2
A38 - 5A/B	Roadside	Diffusion Tube	100	100	41.7	36.8	37.3	43.5	41.4
A38 - 6A/B	Roadside	Diffusion Tube	100	100	32.9	31.1	31.7	30.9	31.7
A5 - 1	Roadside	Diffusion Tube	92	92	40.6	35.6	34.3	36.8	38.9
A5 - 1A	Roadside	Diffusion Tube	100	100	41.1	38.1	37.2	37.5	42.0
A5 - 2A	Roadside	Diffusion Tube	100	100	35.5	31.9	32.1	33.7	32.7
A5 - 2B	Roadside	Diffusion Tube	100	100	43.3	43.2	38.5	39.3	41.7
A5 - 3	Roadside	Diffusion Tube	92	92	30.2	29.0	30.5	27.2	29.0
В	Urban background	Diffusion Tube	100	100	18.6	15.8	16.6	17.4	18.2
L	Urban background	Diffusion Tube	100	100	20.1	17.0	17.3	15.7	17.6
MUC - 1	Roadside	Diffusion Tube	100	100	48.4	44.2	41.5	44.4	47.2
MUC - 1A/B/C	Roadside	Diffusion Tube	100	100	48.3	46.6	46.8	45.4	49.4
MUC - 2	Roadside	Diffusion Tube	100	100	41.9	38.7	37.6	39.1	43.9
MUC - 3	Roadside	Diffusion Tube	100	100	57.2	53.3	54.6	54.1	59.9
MUC - 4	Roadside	Diffusion Tube	92	92	45.1	44.4	42.1	43.9	47.5
MUC - 5	Roadside	Diffusion Tube	100	100	54.8	48.0	47.2	46.3	46.8
MUC - 6	Roadside	Diffusion Tube	100	100	38.7	34.9	38.0	34.5	40.4

Notes: Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**.

NO₂ annual means exceeding 60μg/m³, indicating a potential exceedance of the NO₂ 1-hour mean objective are shown in **bold and underlined**.

- (1) data capture for the monitoring period, in cases where monitoring was only carried out for part of the year.
- (2) data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%).
- (3) Means for diffusion tubes have been corrected for bias. Relevant means have been "annualised" as per Technical Guidance LAQM.TG16 if valid data capture for the full calendar year is less than 75%. See Appendix C for details.

Appendix B: Full Monthly Diffusion Tube Results for 2016

Table B.1 - NO₂ Monthly Diffusion Tube Results - 2016

	NO ₂ Mean Concentrations (μg/m³)														
														Annu	al Mean
Site ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Raw Data	Bias Adjusted	Distance Corrected to Nearest Exposure
A38 -1	47.8	54.5	43.8	39	44.1	35.4	44.4	37.8	44.2	50.4	73.9	51.4	47.2	43.0	31.2
A38 - 2/2(1)	38.8	40.5	40.8	34.0	34.0	37.7	25.9	32.3	43.0	51.4	43.9	56.9	40.3	37.6	-
A38 - 2A/B	52.1	57.0	44.1	42.9	46.4	47.9	44.3	41.6	49.3	53.5	52.7	63.4	49.6	45.1	-
A38 - 3	33.6	39.7	37.3	38.8	34	37	19.8	24.9	29.7	44.0	40.4	51.7	35.9	32.7	-
A38 - 4A/B	45.8	55.0		30.2	40.5	53.2	57.3	44.3	46.2	57.0	58.3	60.1	50.1	45.6	37.3
A38-4X/Y	37.6	41.2	34.7	33.7	32.7	31.9	35.7	29.6	36.1	36.4	42.0	46.2	36.5	33.2	-
A38 - 5A/B	52.4	50.6	42.3	36.4	35.9	39.5	45.0	38.2	46.2	40.9	50.0	68.3	45.5	41.4	27.9
A38 - 6A/B	39.7	43.2	35.5	29.9	27.4	27.5	34.1	29.0	36.2	29.1	41.1	46.0	34.9	31.7	-
A5 - 1	52.1	48.2	33.5	34.8	31	37.7	46.0	32.2	38.9	41.6		74.6	42.8	38.9	-
A5 - 1A	46.9	90.8	30.7	35.6	34.8	33.6	42.6	41.5	46.3	36.2	51.7	63	46.1	42.0	32.4
A5 - 2A	44.9	38	31.3	28.8	25.1	26	36.4	34.7	32.5	31.8	45.5	56.6	36.0	32.7	
A5 - 2B	43.7	49.1	47.5	46.8	46	43.2	45	39.1	41.5	30.3	54.5	62.8	45.8	41.7	33.9
A5 - 3	34	37.8	31.8	32	28.6	30	24.1		28.2	10	44.7	49.6	31.9	29.0	-
В	20.9	41.4	19.1	3.8	14.3	13.1	13.2	11.9	18.1	16.6	27.8	39.4	20.0	18.2	-
L	23.4	24.4	20.6	16.4	15.1	13.6	12.5	12.7	17.0	19.8	26.0	31.1	19.4	17.6	-
MUC - 1	46.2	56.8	51.1	53.1	31.6	56.2	45.5	50.4	47.2	67.8	57	59.9	51.9	47.2	-
MUC - 1A/B/C	47.6	59.7	48.8	50.4	55.9	57.0	47.8	52.5	46.5	63.8	59.4	63.5	54.3	49.4	-
MUC - 2	42.5	55.1	48	50.6	42.7	46.4	44.9	41.3	43	57.3	59.2	47.3	48.2	43.9	35.8
MUC - 3	59.1	72.6	59.4	62.3	65.5	61.2	64.9	59.3	65.7	74	77.1	69.4	65.9	59.9	46.0
MUC - 4		60.9	47.6	58.5	47.2	48.2	39.5	40.5	43.3	59.2	59.1	70	52.2	47.5	44.1
MUC - 5	55.5	51.6	40.6	51.7	51.3	46	53.1	49.7	46	45.7	55.9	70.5	51.5	46.8	38.2
MUC - 6	44.9	40.7	37.5	32.3	30.2	28.8	47.7	40.1	49.5	45.6	60.6	74.8	44.4	40.4	33.7
LT										41.9	49.0	67.2	52.7	48.0	-

^{(1) (2)} See Appendix C for details on bias adjustment and distance correction.

Key: Missing Tube/s No Monitoring

Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC

Diffusion Tube Bias Adjustment Factors

The diffusion tubes are supplied and analysed by Staffordshire Scientific Services utilising the 20% triethanolamine (TEA) in water preparation method.

As there are no automatic monitoring stations within Lichfield District, a national bias adjustment factor has not been calculated. A bias adjustment of 0.91 for the year 2016 based on 13 studies; has been obtained from the national bias adjustment calculator. National bias adjustment factors were also used in the previous years.

For previous data, years 2012 to 2015, the bias adjustment factors have been taken from the Council's previous LAQM annual reports. The factors used were 0.86 (2012), 0.87 (2013), 0.83 (2014) and 0.85 (2015).

Short to Long Term Adjustment

There were no monitoring sites requiring annualisation in 2016. One site was monitored for three months only in 2016 and it was deemed too slight a data capture (25%) to establish valid results.

QA/QC of Diffusion Tube Monitoring

Staffordshire Scientific Services is a UKAS accredited laboratory and participates in the in the new AIR-PT Scheme (a continuation of the Workplace Analysis Scheme for Proficiency (WASP)) for NO_2 tube analysis and the Annual Field Inter-Comparison Exercise. These provide strict performance criteria for participating laboratories to meet, thereby ensuring NO_2 concentrations reported are of a high calibre. The lab follows the procedures set out in the Harmonisation Practical Guidance. In 2016, Staffordshire Scientific Services scored 75% in the AIR-PT rounds AR 012 (January to February 2016) and AR013 (April to May 2016), 100% in AR 015 (July to August 2016) and no results were provided for AR016 (September to October 2016). The percentage score reflects the results deemed to be satisfactory based upon the z-score of $< \pm 2$. Based on 14 diffusion tube studies, all local Authority co-location studies in 2016 were rated as 'satisfactory' (tubes are considered to have "satisfactory" precision where the coefficient of variation of duplicate or triplicate diffusion tubes for eight or more periods during the year is less or equal to 20%).

Monitoring Results - Distance Correction

Figure C.1- Distance with Fall off Calculator

Distan	ce (m)	NO₂ Annual Mean Concentration (µg/m³)					
Monitoring Site to Kerb	Receptor to Kerb	Background	Monitored at Site	Predicted at Receptor			
1.0	10.0	17.6	43.0	31.2			
6.9	16.9	17.6	45.6	37.3			
10.0	45.0	17.6	41.4	27.9			
2.0	8.0	17.6	41.7	33.9			
2.0	7.0	17.6	40.4	33.7			
5.0	14.0	17.6	43.9	35.8			
5.0	15.0	17.6	59.9	46.0			
4.0	6.0	17.6	47.5	44.1			
1.0	7.0	17.6	42.0	32.4			
2.0	7.0	17.6	46.8	38.2			
	1.0 6.9 10.0 2.0 2.0 5.0 4.0 1.0	Site to Kerb Kerb 1.0 10.0 6.9 16.9 10.0 45.0 2.0 8.0 2.0 7.0 5.0 14.0 5.0 15.0 4.0 6.0 1.0 7.0	Site to Kerb Kerb Background 1.0 10.0 17.6 6.9 16.9 17.6 10.0 45.0 17.6 2.0 8.0 17.6 2.0 7.0 17.6 5.0 14.0 17.6 5.0 15.0 17.6 4.0 6.0 17.6 1.0 7.0 17.6	Site to Kerb Kerb Background Site 1.0 10.0 17.6 43.0 6.9 16.9 17.6 45.6 10.0 45.0 17.6 41.4 2.0 8.0 17.6 41.7 2.0 7.0 17.6 40.4 5.0 14.0 17.6 43.9 5.0 15.0 17.6 59.9 4.0 6.0 17.6 47.5 1.0 7.0 17.6 42.0			

New Developments

High Speed 2 (HS2) is a planned high-speed railway in the United Kingdom linking London, Birmingham, the East Midlands, Leeds, Sheffield and Manchester. It would be the second high-speed rail line in Britain, after High Speed 1 (HS1) which connects London to the Channel Tunnel.

Phase one is a north westerly to route between London Euston onto the northbound classic WCML just north of Lichfield in Staffordshire taking service to the North West of England and Scotland.

Phase two will create two branch lines from Birmingham running north either side of the Pennines creating a "Y" network. Phase 2 is split into two phases, phase 2a and 2b. Phase 2a is the section from Lichfield to Crewe on the western section of the "Y" and phase 2b the remainder of phase 2.

Although the HS2 project will pass through the Lichfield Council area it is not considered likely to cause any adverse air quality impacts at present.

A development approved in 2014 consists of an area close to the A38, where currently 8 diffusion tubes are located. The development will consist of a large scale demolition and construction of up to 750 dwellings, a school, community centre, retail development, care home, water drainage and a car park containing 75 parking spaces⁵. The potential effects to consider are construction dust and construction traffic, increased population and increased traffic along the A38.

5

 $^{^{5}\} https://planning.lichfielddc.gov.uk/online-applications/applicationDetails.do?activeTab=summary\&keyVal=M6MXTQJE05C00$

Appendix D: Map(s) of Monitoring Locations

Figure D. 1 – Map of Non-Automatic Monitoring Sites: Muckley Corner

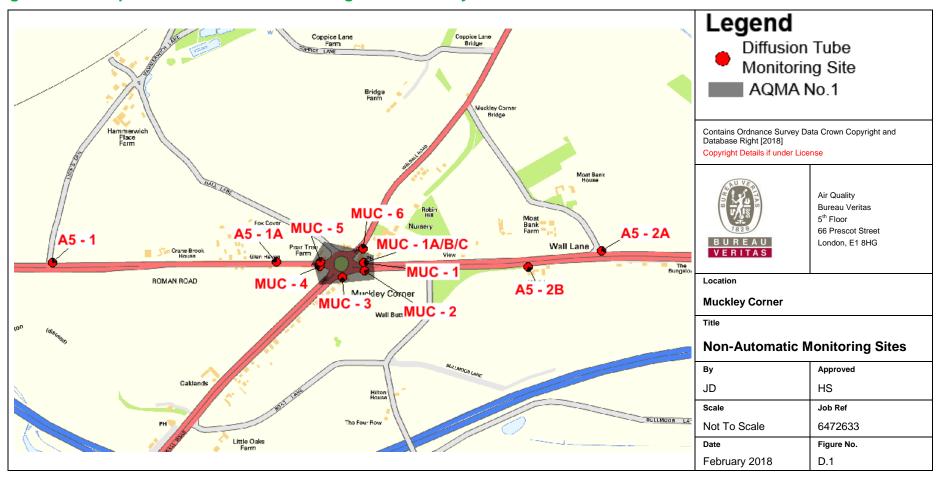


Figure D. 2 – Map of Non-Automatic Monitoring Sites: Alrewas and Fradley

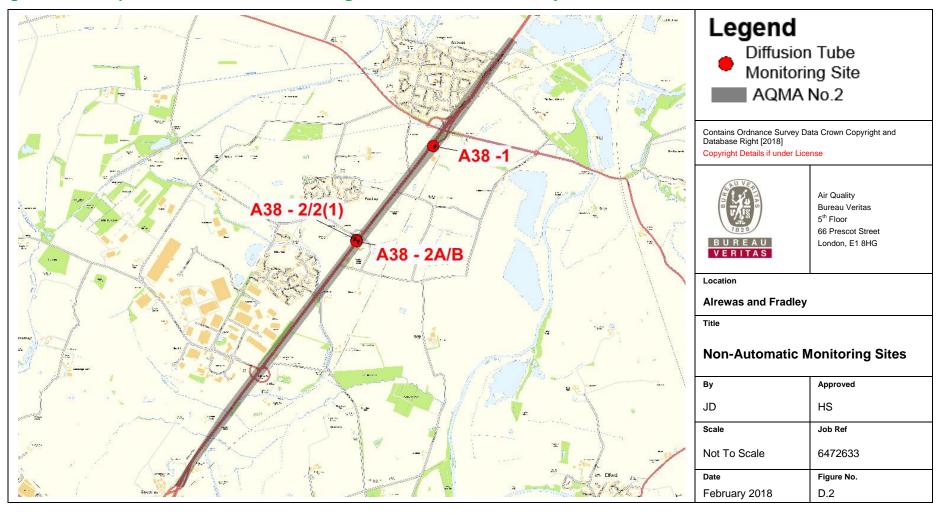


Figure D. 3 – Map of Non-Automatic Monitoring Sites: Canwell

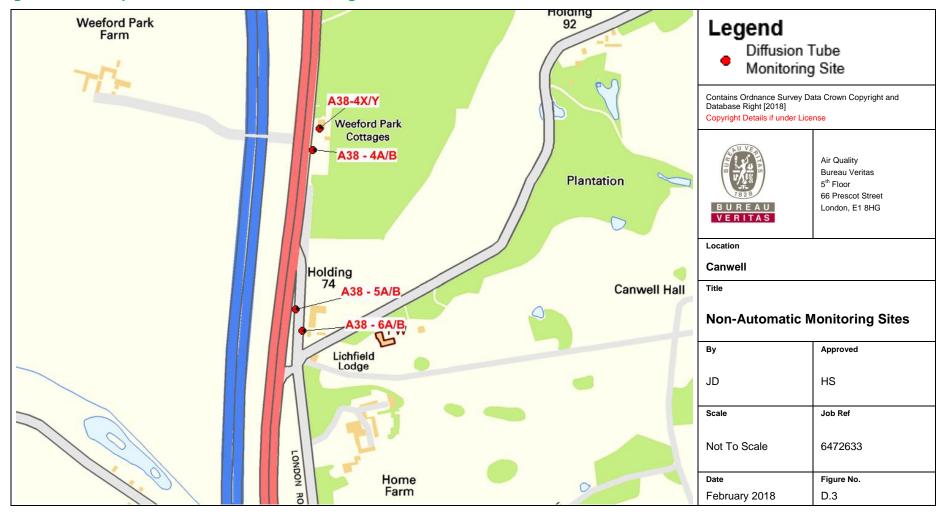
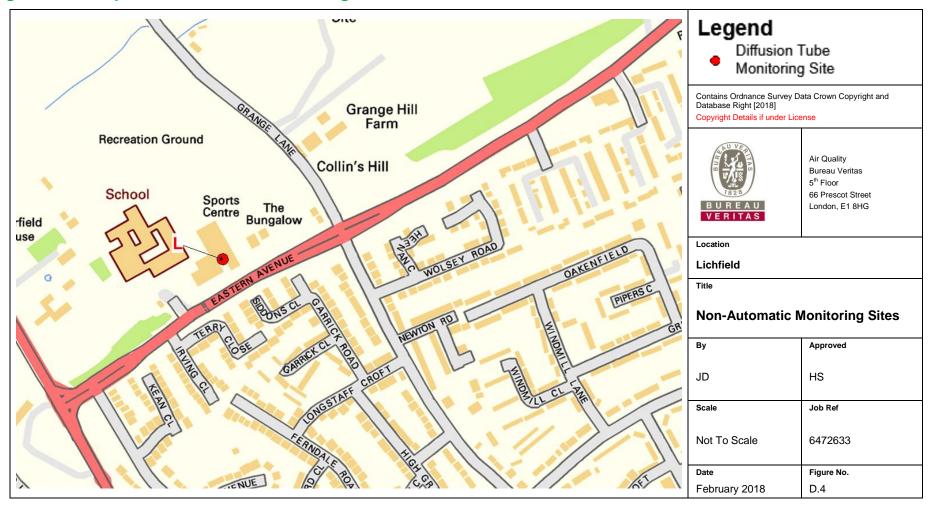



Figure D. 4 - Map of Non-Automatic Monitoring Sites: Lichfield

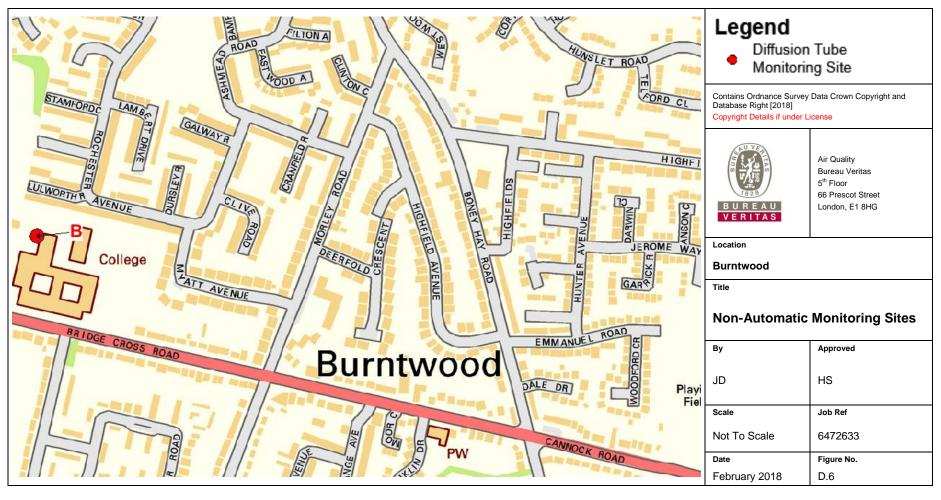

LAQM Annual Status Report 2017

Figure D. 5 - Map of Non-Automatic Monitoring Sites. A5 - Roman Road

LAQM Annual Status Report 2017

Figure D. 6 - Map of Non-Automatic Monitoring Sites: Burntwood

LAQM Annual Status Report 2017

Legend Diffusion Tube Monitoring Site Contains Ordnance Survey Data Crown Copyright and Database Right [2018] Copyright Details if under License Air Quality Bureau Veritas 5th Floor 66 Prescot Street London, E1 8HG Coronation Pooltail Wood Cottages Location BARKERS LANE A38 near Evelyn Wood A38 - 3 Evelyn Wood **Non-Automatic Monitoring Sites** Ву Approved The Strip HS JD Scale Job Ref Not To Scale 6472633 Date Figure No. February 2018 D.7

Figure D. 7 – Map of Non-Automatic Monitoring Sites: A38 near Evelyn Wood

Appendix E: Summary of Air Quality Objectives in England

Table E.1 – Air Quality Objectives in England

Pollutant	Air Quality Objective ⁶				
Poliularit	Concentration	Measured as			
Nitrogen Dioxide (NO ₂)	200 µg/m ³ not to be exceeded more than 18 times a year	1-hour mean			
	40 μg/m ³	Annual mean			
Particulate Matter (PM ₁₀)	50 μg/m³, not to be exceeded more than 35 times a year	24-hour mean			
	40 μg/m ³	Annual mean			
Sulphur Dioxide (SO ₂)	350 µg/m³, not to be exceeded more than 24 times a year	1-hour mean			
	125 µg/m³, not to be exceeded more than 3 times a year	24-hour mean			
	266 µg/m ³ , not to be exceeded more than 35 times a year	15-minute mean			

⁶ The units are in microgrammes of pollutant per cubic metre of air (μg/m³).

Appendix F: Annual Mean PM₁₀ and PM_{2.5} Results of monitoring by Staffordshire Authorities 2011 to 2016

Local Authority	Site Type	Monitor Location	OS Grid Ref			Year				
					2012	2013	2014	2015	2016	
Newcastle under Lyme	Roadside	Queen`s Gardens	E385057	PM ₁₀	14.9	22.5	22	22.9	(6)	
			N346137	PM _{2.5}	10.43 ⁽¹⁾	15.75 ⁽¹⁾	15.4 ⁽¹⁾	16 ⁽¹⁾	(6)	
Cannock Chase	Roadside	Watling St	SJ980086	PM ₁₀	23	21	19.6	(2)	(2)	
		Bridgetown		PM _{2.5}	16.1 ⁽¹⁾	14.7 ⁽¹⁾	13.7 ⁽¹⁾			
Stoke on Trent	Roadside	A50 Meir Tunnel	E392548	PM ₁₀	-	-	-	20 ⁽³⁾	20	
			N342572	PM _{2.5}	ı	ı		14 ⁽³⁾	14	
	Urban Background	Stoke on Trent Central	E388351 N347895	PM _{2.5}	11	10	10	12	12	
	Roadside	Middleport	E385780	PM ₁₀	24	25	24	22	-	
			N349376	PM _{2.5}	17 ⁽¹⁾	18 ⁽¹⁾	17 ⁽¹⁾	15 ⁽¹⁾	(4)	
East Staffordshire	Roadside	Derby Tum	E424671 N324019	PM ₁₀	25.4	29	31	23	(5)	
				PM _{2.5}	17.8 ⁽¹⁾	20.3 ⁽¹⁾	21.7 ⁽¹⁾	16.1 ⁽¹⁾	(5)	

Notes: $^{(1)}PM_{2.5}$ results are derived from PM_{10} monitored results corrected with a 0.7 correction factor in accordance with TG16 Annex B: Derivation of $PM_{2.5}$ to PM_{10} Ratio. All other results are directly monitored.

⁽²⁾ Cannock Chase Watling Street Bridgetown PM₁₀ monitor decommissioned

⁽³⁾ Valid data capture for 2015 was 59%. The site was commissioned on 22 May 2015.

⁽⁴⁾ Middleport monitor was decommissioned at the end 2015

⁽⁵⁾ East Staffordshire's monitors were decommissioned 2016

⁽⁶⁾ To be provided

Glossary of Terms

Abbreviation	Description				
AQAP	Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values'				
AQMA	Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives				
ASR	Air quality Annual Status Report				
Defra	Department for Environment, Food and Rural Affairs				
DMRB	Design Manual for Roads and Bridges – Air quality screening tool produced by Highways England				
EU	European Union				
FDMS	Filter Dynamics Measurement System				
LAQM	Local Air Quality Management				
NO ₂	Nitrogen Dioxide				
NO _x	Nitrogen Oxides				
PM ₁₀	Airborne particulate matter with an aerodynamic diameter of 10μm (micrometres or microns) or less				
PM _{2.5}	Airborne particulate matter with an aerodynamic diameter of 2.5µm or less				
QA/QC	Quality Assurance and Quality Control				
SO ₂	Sulphur Dioxide				
HGV	Heavy Goods Vehicle				
LGV	Light Goods Vehicle				
Lichfield DC	Lichfield District Council				
WCML	West Coast Main Line				

References

- Local Air Quality Management Technical Guidance LAQM.TG (16). Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.
- Local Air Quality Management Policy Guidance LAQM.PG (16). Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland.
- NO₂ Fall off With Distance Tool, available at http://laqm.defra.gov.uk/toolsmonitoring-data/no2-falloff.html
- National Diffusion Tube Bias Adjustment Spreadsheet, version 06/16 published in June 2016.
- https://laqm.defra.gov.uk/diffusion-tubes/qa-qc-framework.html Rounds-12-22-(Jan 2016 - Oct 2017)-NO2-report.pdf
- Lichfield District Council 2015 Updating and Screening Assessment.
- https://www.staffordshire.gov.uk/transport/transportplanning/localtransportplan/ /Lichfield-District-Integrated-Transport-Strategy-Nov-2015.pdf
- https://www.lichfielddc.gov.uk/Council/Planning/The-local-plan-and-planning-policy/Resource-centre/Local-Plan-documents/Downloads/Local-Plan-Strategy/Lichfield-District-Local-Plan-Strategy-2008-2029.pdf
- https://www.lichfielddc.gov.uk/Council/Live-meetings/Forward-plan-for-councildecisions.aspx
- https://planning.lichfielddc.gov.uk/onlineapplications/applicationDetails.do?activeTab=summary&keyVal=M6MXTQJE0 5C00